3.7.64 \(\int (2+3 x)^6 (1+(2+3 x)^7+(2+3 x)^{14})^2 \, dx\) [664]

3.7.64.1 Optimal result
3.7.64.2 Mathematica [B] (verified)
3.7.64.3 Rubi [A] (warning: unable to verify)
3.7.64.4 Maple [B] (verified)
3.7.64.5 Fricas [B] (verification not implemented)
3.7.64.6 Sympy [B] (verification not implemented)
3.7.64.7 Maxima [B] (verification not implemented)
3.7.64.8 Giac [A] (verification not implemented)
3.7.64.9 Mupad [B] (verification not implemented)

3.7.64.1 Optimal result

Integrand size = 26, antiderivative size = 56 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {1}{21} (2+3 x)^7+\frac {1}{21} (2+3 x)^{14}+\frac {1}{21} (2+3 x)^{21}+\frac {1}{42} (2+3 x)^{28}+\frac {1}{105} (2+3 x)^{35} \]

output
1/21*(2+3*x)^7+1/21*(2+3*x)^14+1/21*(2+3*x)^21+1/42*(2+3*x)^28+1/105*(2+3* 
x)^35
 
3.7.64.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(188\) vs. \(2(56)=112\).

Time = 0.01 (sec) , antiderivative size = 188, normalized size of antiderivative = 3.36 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=17451466816 x+443569828128 x^2+7299544818384 x^3+87406679578680 x^4+\frac {4057390785756924 x^5}{5}+6077684727888102 x^6+37727143432895007 x^7+197897276851452864 x^8+889942562270387136 x^9+\frac {17344958593049772048 x^{10}}{5}+11821487501620716192 x^{11}+35454069480572048124 x^{12}+94069263918929616324 x^{13}+221699757548270194389 x^{14}+465517091041681015296 x^{15}+872775774067455498528 x^{16}+1463104032160519033200 x^{17}+2194577166014752240080 x^{18}+2945285062308448290360 x^{19}+3534290697929473864098 x^{20}+\frac {26506949038858918036881 x^{21}}{7}+3614565944605222108800 x^{22}+3064515076512846852480 x^{23}+2298383223254096766840 x^{24}+\frac {7584660010542711771792 x^{25}}{5}+875152864622814086340 x^{26}+437576396725285446564 x^{27}+\frac {2625458326972530284475 x^{28}}{14}+67899784121041365504 x^{29}+\frac {101849676181562048256 x^{30}}{5}+4928210137817518464 x^{31}+924039400840784712 x^{32}+126005372841925188 x^{33}+11118121133111046 x^{34}+\frac {16677181699666569 x^{35}}{35} \]

input
Integrate[(2 + 3*x)^6*(1 + (2 + 3*x)^7 + (2 + 3*x)^14)^2,x]
 
output
17451466816*x + 443569828128*x^2 + 7299544818384*x^3 + 87406679578680*x^4 
+ (4057390785756924*x^5)/5 + 6077684727888102*x^6 + 37727143432895007*x^7 
+ 197897276851452864*x^8 + 889942562270387136*x^9 + (17344958593049772048* 
x^10)/5 + 11821487501620716192*x^11 + 35454069480572048124*x^12 + 94069263 
918929616324*x^13 + 221699757548270194389*x^14 + 465517091041681015296*x^1 
5 + 872775774067455498528*x^16 + 1463104032160519033200*x^17 + 21945771660 
14752240080*x^18 + 2945285062308448290360*x^19 + 3534290697929473864098*x^ 
20 + (26506949038858918036881*x^21)/7 + 3614565944605222108800*x^22 + 3064 
515076512846852480*x^23 + 2298383223254096766840*x^24 + (75846600105427117 
71792*x^25)/5 + 875152864622814086340*x^26 + 437576396725285446564*x^27 + 
(2625458326972530284475*x^28)/14 + 67899784121041365504*x^29 + (1018496761 
81562048256*x^30)/5 + 4928210137817518464*x^31 + 924039400840784712*x^32 + 
 126005372841925188*x^33 + 11118121133111046*x^34 + (16677181699666569*x^3 
5)/35
 
3.7.64.3 Rubi [A] (warning: unable to verify)

Time = 0.22 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.86, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {1725, 1690, 1085, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (3 x+2)^6 \left ((3 x+2)^{14}+(3 x+2)^7+1\right )^2 \, dx\)

\(\Big \downarrow \) 1725

\(\displaystyle \frac {1}{3} \int (3 x+2)^6 \left ((3 x+2)^{14}+(3 x+2)^7+1\right )^2d(3 x+2)\)

\(\Big \downarrow \) 1690

\(\displaystyle \frac {1}{21} \int \left ((3 x+2)^{14}+3 x+3\right )^2d(3 x+2)^7\)

\(\Big \downarrow \) 1085

\(\displaystyle \frac {1}{21} \int \left ((3 x+2)^{28}+2 (3 x+2)^{21}+3 (3 x+2)^{14}+2 (3 x+2)^7+1\right )d(3 x+2)^7\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{21} \left ((3 x+2)^7+\frac {1}{5} (3 x+2)^5+\frac {1}{2} (3 x+2)^4+(3 x+2)^3+(3 x+2)^2\right )\)

input
Int[(2 + 3*x)^6*(1 + (2 + 3*x)^7 + (2 + 3*x)^14)^2,x]
 
output
((2 + 3*x)^2 + (2 + 3*x)^3 + (2 + 3*x)^4/2 + (2 + 3*x)^5/5 + (2 + 3*x)^7)/ 
21
 

3.7.64.3.1 Defintions of rubi rules used

rule 1085
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegr 
and[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c}, x] && IntegerQ[p] && (G 
tQ[p, 0] || EqQ[a, 0])
 

rule 1690
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol 
] :> Simp[1/n   Subst[Int[(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, 
 b, c, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]
 

rule 1725
Int[(u_)^(m_.)*((a_.) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.), x_Symbo 
l] :> Simp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^n + c*x^ 
(2*n))^p, x], x, v], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && 
LinearPairQ[u, v, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.7.64.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(173\) vs. \(2(46)=92\).

Time = 0.59 (sec) , antiderivative size = 174, normalized size of antiderivative = 3.11

method result size
gosper \(\frac {x \left (33354363399333138 x^{34}+778268479317773220 x^{33}+8820376098934763160 x^{32}+64682758058854929840 x^{31}+344974709647226292480 x^{30}+1425895466541868675584 x^{29}+4752984888472895585280 x^{28}+13127291634862651422375 x^{27}+30630347770769981259480 x^{26}+61260700523596986043800 x^{25}+106185240147597964805088 x^{24}+160886825627786773678800 x^{23}+214516055355899279673600 x^{22}+253019616122365547616000 x^{21}+265069490388589180368810 x^{20}+247400348855063170486860 x^{19}+206169954361591380325200 x^{18}+153620401621032656805600 x^{17}+102417282251236332324000 x^{16}+61094304184721884896960 x^{15}+32586196372917671070720 x^{14}+15518983028378913607230 x^{13}+6584848474325073142680 x^{12}+2481784863640043368680 x^{11}+827504125113450133440 x^{10}+242829420302696808672 x^{9}+62295979358927099520 x^{8}+13852809379601700480 x^{7}+2640900040302650490 x^{6}+425437930952167140 x^{5}+56803471000596936 x^{4}+6118467570507600 x^{3}+510968137286880 x^{2}+31049887968960 x +1221602677120\right )}{70}\) \(174\)
default \(\frac {17344958593049772048}{5} x^{10}+11821487501620716192 x^{11}+35454069480572048124 x^{12}+94069263918929616324 x^{13}+17451466816 x +7299544818384 x^{3}+\frac {4057390785756924}{5} x^{5}+889942562270387136 x^{9}+37727143432895007 x^{7}+87406679578680 x^{4}+221699757548270194389 x^{14}+197897276851452864 x^{8}+6077684727888102 x^{6}+443569828128 x^{2}+437576396725285446564 x^{27}+\frac {7584660010542711771792}{5} x^{25}+3534290697929473864098 x^{20}+2945285062308448290360 x^{19}+2194577166014752240080 x^{18}+1463104032160519033200 x^{17}+872775774067455498528 x^{16}+465517091041681015296 x^{15}+3064515076512846852480 x^{23}+3614565944605222108800 x^{22}+\frac {26506949038858918036881}{7} x^{21}+2298383223254096766840 x^{24}+875152864622814086340 x^{26}+\frac {2625458326972530284475}{14} x^{28}+67899784121041365504 x^{29}+\frac {101849676181562048256}{5} x^{30}+4928210137817518464 x^{31}+924039400840784712 x^{32}+126005372841925188 x^{33}+11118121133111046 x^{34}+\frac {16677181699666569}{35} x^{35}\) \(175\)
norman \(\frac {17344958593049772048}{5} x^{10}+11821487501620716192 x^{11}+35454069480572048124 x^{12}+94069263918929616324 x^{13}+17451466816 x +7299544818384 x^{3}+\frac {4057390785756924}{5} x^{5}+889942562270387136 x^{9}+37727143432895007 x^{7}+87406679578680 x^{4}+221699757548270194389 x^{14}+197897276851452864 x^{8}+6077684727888102 x^{6}+443569828128 x^{2}+437576396725285446564 x^{27}+\frac {7584660010542711771792}{5} x^{25}+3534290697929473864098 x^{20}+2945285062308448290360 x^{19}+2194577166014752240080 x^{18}+1463104032160519033200 x^{17}+872775774067455498528 x^{16}+465517091041681015296 x^{15}+3064515076512846852480 x^{23}+3614565944605222108800 x^{22}+\frac {26506949038858918036881}{7} x^{21}+2298383223254096766840 x^{24}+875152864622814086340 x^{26}+\frac {2625458326972530284475}{14} x^{28}+67899784121041365504 x^{29}+\frac {101849676181562048256}{5} x^{30}+4928210137817518464 x^{31}+924039400840784712 x^{32}+126005372841925188 x^{33}+11118121133111046 x^{34}+\frac {16677181699666569}{35} x^{35}\) \(175\)
risch \(\frac {17344958593049772048}{5} x^{10}+11821487501620716192 x^{11}+35454069480572048124 x^{12}+94069263918929616324 x^{13}+17451466816 x +7299544818384 x^{3}+\frac {4057390785756924}{5} x^{5}+889942562270387136 x^{9}+37727143432895007 x^{7}+87406679578680 x^{4}+221699757548270194389 x^{14}+197897276851452864 x^{8}+6077684727888102 x^{6}+443569828128 x^{2}+437576396725285446564 x^{27}+\frac {7584660010542711771792}{5} x^{25}+3534290697929473864098 x^{20}+2945285062308448290360 x^{19}+2194577166014752240080 x^{18}+1463104032160519033200 x^{17}+872775774067455498528 x^{16}+465517091041681015296 x^{15}+3064515076512846852480 x^{23}+3614565944605222108800 x^{22}+\frac {26506949038858918036881}{7} x^{21}+2298383223254096766840 x^{24}+875152864622814086340 x^{26}+\frac {2625458326972530284475}{14} x^{28}+67899784121041365504 x^{29}+\frac {101849676181562048256}{5} x^{30}+4928210137817518464 x^{31}+924039400840784712 x^{32}+126005372841925188 x^{33}+11118121133111046 x^{34}+\frac {16677181699666569}{35} x^{35}\) \(175\)
parallelrisch \(\frac {17344958593049772048}{5} x^{10}+11821487501620716192 x^{11}+35454069480572048124 x^{12}+94069263918929616324 x^{13}+17451466816 x +7299544818384 x^{3}+\frac {4057390785756924}{5} x^{5}+889942562270387136 x^{9}+37727143432895007 x^{7}+87406679578680 x^{4}+221699757548270194389 x^{14}+197897276851452864 x^{8}+6077684727888102 x^{6}+443569828128 x^{2}+437576396725285446564 x^{27}+\frac {7584660010542711771792}{5} x^{25}+3534290697929473864098 x^{20}+2945285062308448290360 x^{19}+2194577166014752240080 x^{18}+1463104032160519033200 x^{17}+872775774067455498528 x^{16}+465517091041681015296 x^{15}+3064515076512846852480 x^{23}+3614565944605222108800 x^{22}+\frac {26506949038858918036881}{7} x^{21}+2298383223254096766840 x^{24}+875152864622814086340 x^{26}+\frac {2625458326972530284475}{14} x^{28}+67899784121041365504 x^{29}+\frac {101849676181562048256}{5} x^{30}+4928210137817518464 x^{31}+924039400840784712 x^{32}+126005372841925188 x^{33}+11118121133111046 x^{34}+\frac {16677181699666569}{35} x^{35}\) \(175\)

input
int((3*x+2)^6*(1+(3*x+2)^7+(3*x+2)^14)^2,x,method=_RETURNVERBOSE)
 
output
1/70*x*(33354363399333138*x^34+778268479317773220*x^33+8820376098934763160 
*x^32+64682758058854929840*x^31+344974709647226292480*x^30+142589546654186 
8675584*x^29+4752984888472895585280*x^28+13127291634862651422375*x^27+3063 
0347770769981259480*x^26+61260700523596986043800*x^25+10618524014759796480 
5088*x^24+160886825627786773678800*x^23+214516055355899279673600*x^22+2530 
19616122365547616000*x^21+265069490388589180368810*x^20+247400348855063170 
486860*x^19+206169954361591380325200*x^18+153620401621032656805600*x^17+10 
2417282251236332324000*x^16+61094304184721884896960*x^15+32586196372917671 
070720*x^14+15518983028378913607230*x^13+6584848474325073142680*x^12+24817 
84863640043368680*x^11+827504125113450133440*x^10+242829420302696808672*x^ 
9+62295979358927099520*x^8+13852809379601700480*x^7+2640900040302650490*x^ 
6+425437930952167140*x^5+56803471000596936*x^4+6118467570507600*x^3+510968 
137286880*x^2+31049887968960*x+1221602677120)
 
3.7.64.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (46) = 92\).

Time = 0.24 (sec) , antiderivative size = 174, normalized size of antiderivative = 3.11 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {16677181699666569}{35} \, x^{35} + 11118121133111046 \, x^{34} + 126005372841925188 \, x^{33} + 924039400840784712 \, x^{32} + 4928210137817518464 \, x^{31} + \frac {101849676181562048256}{5} \, x^{30} + 67899784121041365504 \, x^{29} + \frac {2625458326972530284475}{14} \, x^{28} + 437576396725285446564 \, x^{27} + 875152864622814086340 \, x^{26} + \frac {7584660010542711771792}{5} \, x^{25} + 2298383223254096766840 \, x^{24} + 3064515076512846852480 \, x^{23} + 3614565944605222108800 \, x^{22} + \frac {26506949038858918036881}{7} \, x^{21} + 3534290697929473864098 \, x^{20} + 2945285062308448290360 \, x^{19} + 2194577166014752240080 \, x^{18} + 1463104032160519033200 \, x^{17} + 872775774067455498528 \, x^{16} + 465517091041681015296 \, x^{15} + 221699757548270194389 \, x^{14} + 94069263918929616324 \, x^{13} + 35454069480572048124 \, x^{12} + 11821487501620716192 \, x^{11} + \frac {17344958593049772048}{5} \, x^{10} + 889942562270387136 \, x^{9} + 197897276851452864 \, x^{8} + 37727143432895007 \, x^{7} + 6077684727888102 \, x^{6} + \frac {4057390785756924}{5} \, x^{5} + 87406679578680 \, x^{4} + 7299544818384 \, x^{3} + 443569828128 \, x^{2} + 17451466816 \, x \]

input
integrate((2+3*x)^6*(1+(2+3*x)^7+(2+3*x)^14)^2,x, algorithm="fricas")
 
output
16677181699666569/35*x^35 + 11118121133111046*x^34 + 126005372841925188*x^ 
33 + 924039400840784712*x^32 + 4928210137817518464*x^31 + 1018496761815620 
48256/5*x^30 + 67899784121041365504*x^29 + 2625458326972530284475/14*x^28 
+ 437576396725285446564*x^27 + 875152864622814086340*x^26 + 75846600105427 
11771792/5*x^25 + 2298383223254096766840*x^24 + 3064515076512846852480*x^2 
3 + 3614565944605222108800*x^22 + 26506949038858918036881/7*x^21 + 3534290 
697929473864098*x^20 + 2945285062308448290360*x^19 + 219457716601475224008 
0*x^18 + 1463104032160519033200*x^17 + 872775774067455498528*x^16 + 465517 
091041681015296*x^15 + 221699757548270194389*x^14 + 94069263918929616324*x 
^13 + 35454069480572048124*x^12 + 11821487501620716192*x^11 + 173449585930 
49772048/5*x^10 + 889942562270387136*x^9 + 197897276851452864*x^8 + 377271 
43432895007*x^7 + 6077684727888102*x^6 + 4057390785756924/5*x^5 + 87406679 
578680*x^4 + 7299544818384*x^3 + 443569828128*x^2 + 17451466816*x
 
3.7.64.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 187 vs. \(2 (41) = 82\).

Time = 0.07 (sec) , antiderivative size = 187, normalized size of antiderivative = 3.34 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {16677181699666569 x^{35}}{35} + 11118121133111046 x^{34} + 126005372841925188 x^{33} + 924039400840784712 x^{32} + 4928210137817518464 x^{31} + \frac {101849676181562048256 x^{30}}{5} + 67899784121041365504 x^{29} + \frac {2625458326972530284475 x^{28}}{14} + 437576396725285446564 x^{27} + 875152864622814086340 x^{26} + \frac {7584660010542711771792 x^{25}}{5} + 2298383223254096766840 x^{24} + 3064515076512846852480 x^{23} + 3614565944605222108800 x^{22} + \frac {26506949038858918036881 x^{21}}{7} + 3534290697929473864098 x^{20} + 2945285062308448290360 x^{19} + 2194577166014752240080 x^{18} + 1463104032160519033200 x^{17} + 872775774067455498528 x^{16} + 465517091041681015296 x^{15} + 221699757548270194389 x^{14} + 94069263918929616324 x^{13} + 35454069480572048124 x^{12} + 11821487501620716192 x^{11} + \frac {17344958593049772048 x^{10}}{5} + 889942562270387136 x^{9} + 197897276851452864 x^{8} + 37727143432895007 x^{7} + 6077684727888102 x^{6} + \frac {4057390785756924 x^{5}}{5} + 87406679578680 x^{4} + 7299544818384 x^{3} + 443569828128 x^{2} + 17451466816 x \]

input
integrate((2+3*x)**6*(1+(2+3*x)**7+(2+3*x)**14)**2,x)
 
output
16677181699666569*x**35/35 + 11118121133111046*x**34 + 126005372841925188* 
x**33 + 924039400840784712*x**32 + 4928210137817518464*x**31 + 10184967618 
1562048256*x**30/5 + 67899784121041365504*x**29 + 2625458326972530284475*x 
**28/14 + 437576396725285446564*x**27 + 875152864622814086340*x**26 + 7584 
660010542711771792*x**25/5 + 2298383223254096766840*x**24 + 30645150765128 
46852480*x**23 + 3614565944605222108800*x**22 + 26506949038858918036881*x* 
*21/7 + 3534290697929473864098*x**20 + 2945285062308448290360*x**19 + 2194 
577166014752240080*x**18 + 1463104032160519033200*x**17 + 8727757740674554 
98528*x**16 + 465517091041681015296*x**15 + 221699757548270194389*x**14 + 
94069263918929616324*x**13 + 35454069480572048124*x**12 + 1182148750162071 
6192*x**11 + 17344958593049772048*x**10/5 + 889942562270387136*x**9 + 1978 
97276851452864*x**8 + 37727143432895007*x**7 + 6077684727888102*x**6 + 405 
7390785756924*x**5/5 + 87406679578680*x**4 + 7299544818384*x**3 + 44356982 
8128*x**2 + 17451466816*x
 
3.7.64.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (46) = 92\).

Time = 0.23 (sec) , antiderivative size = 174, normalized size of antiderivative = 3.11 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {16677181699666569}{35} \, x^{35} + 11118121133111046 \, x^{34} + 126005372841925188 \, x^{33} + 924039400840784712 \, x^{32} + 4928210137817518464 \, x^{31} + \frac {101849676181562048256}{5} \, x^{30} + 67899784121041365504 \, x^{29} + \frac {2625458326972530284475}{14} \, x^{28} + 437576396725285446564 \, x^{27} + 875152864622814086340 \, x^{26} + \frac {7584660010542711771792}{5} \, x^{25} + 2298383223254096766840 \, x^{24} + 3064515076512846852480 \, x^{23} + 3614565944605222108800 \, x^{22} + \frac {26506949038858918036881}{7} \, x^{21} + 3534290697929473864098 \, x^{20} + 2945285062308448290360 \, x^{19} + 2194577166014752240080 \, x^{18} + 1463104032160519033200 \, x^{17} + 872775774067455498528 \, x^{16} + 465517091041681015296 \, x^{15} + 221699757548270194389 \, x^{14} + 94069263918929616324 \, x^{13} + 35454069480572048124 \, x^{12} + 11821487501620716192 \, x^{11} + \frac {17344958593049772048}{5} \, x^{10} + 889942562270387136 \, x^{9} + 197897276851452864 \, x^{8} + 37727143432895007 \, x^{7} + 6077684727888102 \, x^{6} + \frac {4057390785756924}{5} \, x^{5} + 87406679578680 \, x^{4} + 7299544818384 \, x^{3} + 443569828128 \, x^{2} + 17451466816 \, x \]

input
integrate((2+3*x)^6*(1+(2+3*x)^7+(2+3*x)^14)^2,x, algorithm="maxima")
 
output
16677181699666569/35*x^35 + 11118121133111046*x^34 + 126005372841925188*x^ 
33 + 924039400840784712*x^32 + 4928210137817518464*x^31 + 1018496761815620 
48256/5*x^30 + 67899784121041365504*x^29 + 2625458326972530284475/14*x^28 
+ 437576396725285446564*x^27 + 875152864622814086340*x^26 + 75846600105427 
11771792/5*x^25 + 2298383223254096766840*x^24 + 3064515076512846852480*x^2 
3 + 3614565944605222108800*x^22 + 26506949038858918036881/7*x^21 + 3534290 
697929473864098*x^20 + 2945285062308448290360*x^19 + 219457716601475224008 
0*x^18 + 1463104032160519033200*x^17 + 872775774067455498528*x^16 + 465517 
091041681015296*x^15 + 221699757548270194389*x^14 + 94069263918929616324*x 
^13 + 35454069480572048124*x^12 + 11821487501620716192*x^11 + 173449585930 
49772048/5*x^10 + 889942562270387136*x^9 + 197897276851452864*x^8 + 377271 
43432895007*x^7 + 6077684727888102*x^6 + 4057390785756924/5*x^5 + 87406679 
578680*x^4 + 7299544818384*x^3 + 443569828128*x^2 + 17451466816*x
 
3.7.64.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.82 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {1}{105} \, {\left (3 \, x + 2\right )}^{35} + \frac {1}{42} \, {\left (3 \, x + 2\right )}^{28} + \frac {1}{21} \, {\left (3 \, x + 2\right )}^{21} + \frac {1}{21} \, {\left (3 \, x + 2\right )}^{14} + \frac {1}{21} \, {\left (3 \, x + 2\right )}^{7} \]

input
integrate((2+3*x)^6*(1+(2+3*x)^7+(2+3*x)^14)^2,x, algorithm="giac")
 
output
1/105*(3*x + 2)^35 + 1/42*(3*x + 2)^28 + 1/21*(3*x + 2)^21 + 1/21*(3*x + 2 
)^14 + 1/21*(3*x + 2)^7
 
3.7.64.9 Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.82 \[ \int (2+3 x)^6 \left (1+(2+3 x)^7+(2+3 x)^{14}\right )^2 \, dx=\frac {{\left (3\,x+2\right )}^7}{21}+\frac {{\left (3\,x+2\right )}^{14}}{21}+\frac {{\left (3\,x+2\right )}^{21}}{21}+\frac {{\left (3\,x+2\right )}^{28}}{42}+\frac {{\left (3\,x+2\right )}^{35}}{105} \]

input
int((3*x + 2)^6*((3*x + 2)^7 + (3*x + 2)^14 + 1)^2,x)
 
output
(3*x + 2)^7/21 + (3*x + 2)^14/21 + (3*x + 2)^21/21 + (3*x + 2)^28/42 + (3* 
x + 2)^35/105